Liver and muscle glycogen repletion using 13C magnetic resonance spectroscopy following ingestion of maltodextrin, galactose, protein and amino acids.

نویسندگان

  • Eva Detko
  • John P O'Hara
  • Peter E Thelwall
  • Fiona E Smith
  • Djordje G Jakovljevic
  • Roderick F G J King
  • Michael I Trenell
چکیده

The present study evaluated whether the inclusion of protein (PRO) and amino acids (AA) within a maltodextrin (MD) and galactose (GAL) recovery drink enhanced post-exercise liver and muscle glycogen repletion. A total of seven trained male cyclists completed two trials, separated by 7 d. Each trial involved 2 h of standardised intermittent cycling, followed by 4 h recovery. During recovery, one of two isoenergetic formulations, MD-GAL (0.9 g MD/kg body mass (BM) per h and 0.3 g GAL/kg BM per h) or MD-GAL-PRO+AA (0.5 g MD/kg BM per h, 0.3 g GAL/kg BM per h, 0.4 g whey PRO hydrolysate plus l-leucine and l-phenylalanine/kg BM per h) was ingested at every 30 min. Liver and muscle glycogen were measured after depletion exercise and at the end of recovery using 1H-13C-magnetic resonance spectroscopy. Despite higher postprandial insulin concentations for MD-GAL-PRO+AA compared with MD-GAL (61.3 (se 6.2) v. 29.6 (se 3.0) mU/l, (425.8 (se 43.1) v. 205.6 (se 20.8) pmol/l) P= 0.03), there were no significant differences in post-recovery liver (195.3 (se 2.6) v. 213.8 (se 18.0) mmol/l) or muscle glycogen concentrations (49.7 (se 4.0) v. 51.1 (se 7.9) mmol/l). The rate of muscle glycogen repletion was significantly higher for MD-GAL compared with MD-GAL-PRO+AA (5.8 (se 0.7) v. 3.7 (se 0.6) mmol/l per h, P= 0.04), while there were no significant differences in the rate of liver glycogen repletion (15.0 (se 2.5) v. 13.0 (se 2.7) mmol/l per h). PRO and AA within a MD-GAL recovery drink, compared with an isoenergetic mix of MD-GAL, did not enhance but matched liver and muscle glycogen recovery. This suggests that the increased postprandial insulinaemia only compensated for the lower MD content in the MD-GAL-PRO+AA treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion when compared to glucose ingestion in trained athletes

Purpose: To assess the effects of sucrose versus glucose ingestion on post-exercise liver and muscle glycogen repletion. Methods: Fifteen well-trained male cyclists completed 2 test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg−1·h−1 sucrose or glucose. Blood was sampled frequently and C magnetic resonance spec...

متن کامل

Detection of human muscle glycogen by natural abundance 13C NMR.

Natural abundance 13C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1H decoupling was used to ob...

متن کامل

Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.

The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magne...

متن کامل

Liver glycogen metabolism during and after prolonged endurance-type exercise.

Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily...

متن کامل

Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.

Decreased skeletal muscle glucose disposal and increased endogenous glucose production (EGP) contribute to postprandial hyperglycemia in type 2 diabetes, but the contribution of hepatic glycogen metabolism remains uncertain. Hepatic glycogen metabolism and EGP were monitored in type 2 diabetic patients and nondiabetic volunteer control subjects (CON) after mixed meal ingestion and during hyperg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 110 5  شماره 

صفحات  -

تاریخ انتشار 2013